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Abstract

Particle irradiation on the mechanical sensor of the ADXL50
microelectromechanical accelerometer shifts the output
voltage. An earlier conclusion, that a dielectric below the
sensor becomes charged, is extended by quantifying the effect
of this charge on device output. It is shown that an electrostatic
force is consistent with the observation that the output voltage
shift is independent of acceleration. An appendix derives a
convenient algorithm for calculating electrostatic forces, which
may also be used for other MEMS devices.

I. INTRODUCTION

The Analog Devices ADXLS50 accelerometer is a
microelectromechanical system (MEMS) containing a
mechanical structure (sensor), part of which moves under
acceleration, and electronics integrated on the same chip. The
output voltage is a measure of the acceleration. Earlier work
[1,2] indicated that ionization effects in both the sensor and
electronics contributed to the radiation response of the device.
Restricting the irradiation, via an aperture, to hit only the
sensor caused a shift in the output voltage. Knudson et al. [1]
have demonstrated that the output voltage shift is caused by
the charging of a dielectric below the sensor. The present
paper provides a more complete explanation by quantitatively
analyzing the effect that dielectric charging should have on
device operation.

II. DEVICE OVERVIEW

A high-level discussion of device operation is presented
here. Interested readers are referred to Ref.[3] for details. A
functional diagram of the ADLX50 is shown in Fig.1. The
sensor is symbolically represented by one moveable electrode
(ME) between two fixed electrodes. The three electrodes form
two capacitors in series, shown as C; and C; in the figure.
Voltages with a “~” superscript are AC and all others are DC.
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Fig.1: Functional Diagram of the Device.

The voltages V), Vs, and V™ are fixed. A force applied to the
ME (usually a pseudo-force produced by accelerating the
device) tends to displace it from the center position. This force
is balanced partly by a mechanical spring constant (not shown
in the figure), but primarily by electrostatic forces produced by
V1, V2, and V), (more will be said about this later). The end
result is that the applied force produces some displacement of
the ME. This displacement changes C, and C;, which changes
V- shown in the figure. This voltage is the input to the primary
circuit. The response to this AC input is a DC output voltage
Ve, Which is the most direct DC measure of the ME position.
During closed loop operation (the case represented in the
figure), this DC voltage is transmitted to the ME. Resistor Rs
isolates AC from DC voltages in the sense that it simulates a
short for DC voltages and an open circuit for AC voltages. To
the extent that the primary circuit can be approximated as
ideal, its input current is zero (both AC and DC). Therefore
the AC voltage at the ME is completely determined by the ME
position, while the DC voltage at the same location is
completely determined by the primary circuit output. The
primary circuit is designed so that V, responds to V™ in such a
way that the electrostatic forces produced by the DC voltages
in the sensor oppose the applied force. The result is that the
ME displacement is much smaller than it would be if the
applied force was balanced by the mechanical spring constant
alone. Limiting the displacement to small values improves
device linearity. The voltage Vi, has a fixed calibration and



can only be monitored by high-impedance instrumentation.
The secondary circuit converts VY, into a more conveniently
calibrated V (the user has some control over this calibration)
which can be monitored by lower impedance instrumentation.

A more literal representation of the sensor, illustrated in
Fig.2, shows that C, and C, are each parallel combinations of
many capacitors which can be grouped into unit cells. Fig.2
shows four unit cells, but the entire sensor contains 42 such
cells. The ME voltage is represented as V; in this figure to
include the most general possible conditions (Fig.1 refers to
closed-loop operation, but there is also a self-test mode in
which V;#V,,). This top view does not show the dielectric,
which is crucial to this investigation. The dielectric is below
the electrodes [1], as illustrated in Fig.3 (the charges and
electric field lines are discussed later). Below the dielectric is
a conducting medium (a silicon substrate) held at the same
potential as the ME to inhibit vertical electrostatic forces on
the ME [1]. The intended motion of the ME is horizontal in
Fig.3.

. THE PROPOSED EXPLANATION

Knudson et al. [1] have experimentally demonstrated that
dielectric charging is responsible for the output voltage shift
observed after sensor irradiation. However, their work did not
explain why dielectric charging should shift the output voltage.
Note that dielectric charging will not influence the AC
voltages (and hence cannot influence Vo), except indirectly
by moving the ME via an electrostatic force. This strongly
suggests that an electrostatic force is involved, but leads to a
question. It is easy to see how a force produced by the
dielectric charge might move the ME vertically, but this does
not explain the observed data. If the ME is horizontally
centered, there should be a null reading at the device output
even if there is a vertical displacement, i.e., a vertical
displacement might change the device sensitivity, but is not
expected to produce an offset in the device output. However,
data reported by Lee et al. [2] show the opposite effect. When
the output voltage is plotted against acceleration, the effect of
electrostatic charging is seen as a vertical translation (or
offset) of this plot, with no change in slope (or sensitivity).
The vertical translation of the plot indicates that a constant
horizontal force is added to the applied force on the ME. The
question is how the charged dielectric can exert a horizontal

force on the ME.

The explanation is illustrated in Fig.3. Nominal charges and
electric fields are defined here to be those produced by the
electrode biasing voltages in the absence of a dielectric charge.
A horizontal electric field line in Fig.3 represents a nominal
field line connecting a nominal positive charge on one
electrode to a nominal negative charge on another. If the ME
is centered, its biasing voltage is adjusted (via the primary
circuit) so that the force, produced by the nominal fields acting
on the nominal charges, on one side of the ME is balanced by
the force on the other side. A dielectric charge upsets this
balance by creating induced image charges in the ME. A
fringing electric field line in Fig.3 begins on a fixed positive
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Fig.2: Top view (not to scale) of four cells in the sensor.
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Fig.3: Side view of one sensor cell illustrating the horizontal
force. For a positively charged dielectric, the resulting field
(nominal plus fringing) and net charge (nominal plus induced)
are both stronger on the right side of the ME.

(in this illustration) charge in the dielectric and ends on a
negative induced charge in the ME. The fringing and nominal
fields add on the right side of the ME, but subtract on the left,
so the resulting field is stronger on the right. The nominal and
induced charges have the same polarities on the right side of
the ME, but opposite polarities on the left, so the net charge is
greater (in absolute value) on the right. The stronger electric
field acting on the stronger charge on the right side of the ME
pulls the ME to the right.

A quantitative analysis of this force is derived in the
appendix. The analysis concludes that the horizontal force on
the ME can be expressed as a sum of two terms. The first term
is the nominal force that would be present under the same
biasing conditions but with an uncharged dielectric. The
second term is proportional to the dielectric charge and is the
excess force that is of interest here. This excess force depends
on V,-V; and on physical parameters describing the sensor and
dielectric, but does not depend on the ME position or on V;.
This is significant because when plotting device output versus
acceleration, the ME position and V; both vary, but V, and V;
are fixed. Therefore the excess force is a constant, so its
influence should be seen as a vertical translation of the plot,
consistent with data presented by Lee et al. [2].
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The excess force, denoted here as f, is the force per unit cell
calculated by (A32) in the appendix, multiplied by 42 cells.
The result is

Lh, o
L2 a2 -1
h,—L+h,

o

where M is the ME mass and the other symbols are explained
below. The left side is written as /M, which is the acceleration
needed to produce a pseudo-force equal to f, because device
calibration data refer to acceleration. The dimensions hg and hy
are shown in Fig.3, and L is electrode length (into the page in
Fig.3). The ratio e.q/g, is the relative dielectric constant for a
homogeneous dielectric, or an effective relative dielectric
constant for an inhomogeneous dielectric. The quantity G is
the dielectric charge per unit area. The quantity he is a
weighted-average, or effective, height (above the lower
electrode) of the charge distribution in the dielectric. If the
dielectric is homogeneous and the charge is confined to a
narrow layer, h.y is the height of this layer. If the dielectric is
inhomogeneous, h.s may not be the actual height. However,
whether or not the dielectric is homogeneous, hegehy if the
dielectric charge is close to the upper dielectric surface. Note
that the force decreases if h.g decreases with o held fixed. This
is because charges closer to the lower electrode induce greater
image charge in this electrode and less image charge in the
upper electrodes.

For numerical evaluation, note that the dielectric consists of
a 60 nm layer of Si;N4 above a 120 nm layer of SiO, [1]. The
relative dielectric constants of the upper and lower materials
are 7.5 and 3.9, respectively. Calculating & from equation
(A20) in the appendix gives g/€¢=4.64. We also have hy=180
nm [1], hg=1.6 um (1], M=0.16 pg [4], L=120 um [4], and V|-
V,=3.2 volts [3]. Substituting these numbers into the above
equation gives

h -1
Lok K, = 1.95x10"°g(—q2—) M
M h, cm

which conveniently calculates f/M in units of the gravitational
acceleration g if (heg/hg)o is expressed in units of elementary
charge per cm®. The sign convention is such that f is positive
when it moves the ME up in Fig.1 (or to the right in Fig.3).
The primary circuit is designed so that a displacement in this
direction increases V. This voltage is inverted in the
secondary circuit, so V,,, decreases. Therefore, a positive o
should decrease V.., and a negative ¢ should increase V.

IV. CHARGING MECHANISMS

Lee er al. [2] investigated the effects from both protons and
electrons when used for sensor-only irradiation. The electrons
were supplied by a scanning electron microscope (SEM).
Although difficult to analytically quantify, charging under
SEM irradiation is familiar. Charging of a dielectric (e.g., a
passivation layer) is a contest between the emission of low-
energy secondary electrons, and the absorption of higher-

energy electrons backscattered from other locations (e.g., a
substrate below a passivation layer) [5]. The relative
importance of the latter mechanism to the former is greatest
when the primary electrons are high-energy and hit the device
at normal incidence [5]. It is empirically known that dielectrics
typically charge negative when the primary electrons hit the
device at normal incidence at energies greater than 10 KeV
[5]. Lee et al. [2] used 30 KeV electrons (most of which will
still have energies exceeding 10 KeV after penetrating the 2
um thick electrodes before reaching the dielectric) at normal
incidence, so we expect a negatively charged dielectric. This
irradiation was found to increase V.., consistent with the
earlier prediction that a negatively charged dielectric should
increase V.

Knudson et al. [1] and Lee et al. [2] both found Vg, to
decrease following sensor-only irradiation by protons,
indicating a positively charged dielectric. If the charging
mechanisms are the same as for SEM irradiation, we conclude
that secondary electron emission dominates backscattered
electron absorption for the proton case (other charging
mechanisms might also be considered as discussed later).
Some of the data presented by Knudson et al. [1] are
reproduced in Fig.4, showing V. as a function of 0.96 MeV
proton fluence. The figure shows that V,,, saturates, indicating
that some other mechanism competes with the charging
mechanism and limits the accumulated charge. The most
obvious competing mechanism is a charge-induced attractive
force that pulls secondary electrons back to the dielectric.
However, it will be argued later that this does not explain the
data, and there must be another competing mechanism that
becomes important even before charging is sufficient to
significantly impede secondary electron escape. A possible
competing mechanism is a proton-induced generation of
mobile electron-hole pairs in the dielectric which move in
response to the electric field. Knudson ez al. [1] suggested that
carriers generated by the protons are ultimately responsible for
dielectric charging. We suggest the opposite, that this
mechanism is a response that limits accumulated charge.
However, our suggestion that charging is by secondary
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Fig.4: V,, as a function of proton fluence from Knudson et
al. {1]. The smooth curve, originally reported as an empirical
fit, is predicted by (3) with suitably chosen « and B.



electrons may have trouble explaining some of the data. The
Knudson et al. data reproduced in Fig.4 include two cases; the
device is biased (V,=3.4 volts, V,=0.2 volts, and V;=1.8 volts)
and unbiased during irradiation. There is almost no difference
between the two cases. We have not quantitatively analyzed
this, but it seems reasonable to expect the two cases to differ if
secondary electron emission really is the charging mechanism.
Additional research is needed.

Whatever the charging and competing mechanisms are,
charging and discharging rates under the conditions
represented by Fig.4 can be quantified with help from (1). Let
Ac be the net increase in o produced by an increment AF of
proton fluence. Then Ao=A;0-A;0 where A;C is the increase
produced by the charging mechanism, and A;c is the decrease
produced by the competing mechanism. We assume that the
first term is proportional to the fluence, i.e., Ayo=qa(hg/h g)AF
for some constant o.. The factor hy/hey is included for later
convenience. If charging is by secondary electrons, the charge
will be near the top of the dielectric, so hy/heg=~1, and o is the
secondary electron yield (average number of electrons emitted
for each proton hit). For any other charging mechanism, a is
an effective yield. The loss term is assumed to be proportional
to both AF and o, i.e., A,o=BoAF for some constant 3. The

resulting equation becomes do/dF=qa(hg/he)-fo with
solution
h, a
L 5=q—[l-exp-BF)] @
he B

Substituting for o in (1) and using calibration data reported by
Knudson et al. [1] to convert /M into V,,, gives

Vout = VO - K2 %[1 - exp(—ﬂ F)] (3)
where Vy=2.3 volts and K2=8.78x10'9 mV-cm?. The smooth
curve in Fig.4 was originally reported as an empirical fit, but
the same curve is produced by (3) if a=6.9 and B=1.64x10"°
cm?. Credibility of secondary electron emission as the
charging mechanism can be tested by considering the number
6.9 calculated for c. If this is the mechanism, the secondary
electron yield should be 6.9. The actual yield is not known,
but 6.9 is the expected order of magnitude. The yield for 1
MeV protons on Al is about 1.0 [6], and the yield is slightly
larger for protons that are slowed down by the electrodes
before reaching the dielectric. The yield for Si;Nj is probably
several times that for Al, possibly more if Si;N, behaves like a
cathode. Therefore, secondary electron emission presently
appears to have some credibility.

It was previously promised that an argument would be given
indicating that an attractive force pulling secondary electrons
back to the dielectric is too weak to be the competing
mechanism limiting the charge. The argument notes that the
potential barrier that secondary electrons must escape, when
irradiation is without biasing voltages, is the potential of the
upper dielectric surface relative to the upper grounded
electrodes (which is also the potential across the dielectric).
This is calculated from (A23) in the appendix. The limiting

value of (h./hy)o is seen from (2) to be qa/P, which is
calculated from the numbers given above to be 4.2x10'%/cm?.
Using the dielectric parameters previously listed, the potential
barrier produced by this limiting value of (hehg)o is
calculated to be 0.29 volts. This applies when the charge is at
its limiting value, i.e., when competing mechanisms prevent
any further charging. In view of the fact that a typical
secondary electron energy is about 2 eV [6], it seems unlikely
that this potential barrier will completely stop any further
charging. However, 0.29 volts across a 0.18 pm thick
dielectric creates a strong electric field there, so a current
through the dielectric (containing proton-induced mobile
carriers) may be a credible competing mechanism.

V. CONCLUSIONS

The response of the ADXL50 to irradiation when the sensor
(alone) is irradiated is believed to be the result of electrostatic
forces produced by dielectric charging. The charging
mechanism induced by SEM irradiation is familiar, though
difficult to analytically quantify. The charging mechanism
induced by proton irradiation is less certain. The charging rate
under Fig.4 conditions has the order of magnitude expected
from secondary electron emission in the absence of biasing
voltages, but this mechanism may not be consistent with the
observation that biasing voltages have almost no effect on the
charging rate. Additional research is needed. However, it is
clear that electron and proton irradiation can shift the output
voltage in opposite directions, so one environment is not
equivalent to another having the same total ionizing dose
(TID) measure.

The notable difference between electron- and proton-
induced responses indicates that the relevant charging
mechanisms differ from those most familiar from TID
investigations of other devices. A suggested explanation is as
follows. While TID can lead to dielectric charging, creating an
electric field that can adversely affect the performance of some
devices, the relevant electric field is typically inside the
device. For conventional devices, an electric field outside the
device is not relevant, and may not even be present. If the
electric field outside the device produced by the dielectric
charge is not already nullified by image charges in nearby
conductive structures, we would expect ambient charged
particles to accumulate on exposed dielectric surfaces until
there is no longer an external field. If the charge on an exposed
dielectric is very close to the surface (as expected for
secondary electron emission), ambient charges that nullify the
electric field outside the dielectric do so by completely
compensating for the dielectric charge, so that there is no net
surface charge. Therefore, we would not expect secondary
electron emission to be an important radiation concern for the
performance of conventional devices.

In contrast, the electric field creating a force on the MEMS
ME is above an exposed dielectric. Note that, regardless of
what the charging mechanism is, it is reasonable to expect
ambient charged particles accumulating on the dielectric
surface to weaken this force. However, Knudson et al.[l]



report very little recovery from a two day anneal at 150°C
following sensor-only irradiation by protons. A suggested
explanation is that very few ambient charged particles are able
to get past the upper electrodes to reach the dielectric. The
result is that the electric field above the dielectric created by
the dielectric charge is not nullified. Therefore, a charging
mechanism such as secondary electron emission may be
important for this MEMS, even though it may not affect the
performance of more conventional devices.

Whether or not the explanations suggested above are
correct, it is still true that TID is not an adequate measure of
the environment for this MEMS, because electrons produce a
different response than protons. Similar effects might be seen
in other MEMS structures, which mandates testing in both
electron and proton environments.
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APPENDIX: CALCULATION OF FORCE

Electrostatic forces exerted on a charged conductor can be
calculated by calculating the energy stored in the electrostatic
field as a function of the location of the conductor, and then
noting how the stored energy changes when the conductor is
moved. The basic idea is familiar, but convenient
computational algorithms are not easily found in the literature.
One such algorithm, utilizing ‘“elementary potentials”, is
derived here for the general case, and then applied to the
specific case considered in the main text.

Al. The Physical Arrangement

The analysis applies to an arbitrary collection of conductors
and dielectric structures contained within a region of space
denoted R. These conductors form at least part of the
boundary surface of R, but the theory requires R to have a
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Fig.Al: An example of a region R having a closed
boundary consisting of conductive surfaces (solid lines)
and/or reflective surfaces (dashed lines). Dielectric
structures are included by allowing € and p to be functions
of position.

closed boundary surface. The boundary surface can consist of
any combination of conducting surfaces and/or reflective
surfaces. A reflective surface is defined by the property that
the normal component of the electric field is zero. An example
of such a region is shown in Fig.Al. Surfaces Sy, S, etc. are
conductors, and surfaces represented by dashed lines are
reflective. If R extends to infinity, it can be closed by
imagining a conducting surface at infinity, which is also
denoted by an S with a subscript, so that the closed boundary
of R consists of the surfaces S, S, etc., together with the
reflective boundaries (if any).

Dielectric materials contained within R are required to be
isotropic, but need not be homogeneous. If any dielectric
materials are in direct contact with the conductor at which the
force is to be calculated, there may be mechanical forces
between the dielectric and conductor, which are not calculated
in the analysis to follow. Dielectric structures are not shown in
Fig.Al, because such structures are represented by allowing
the dielectric constant € to be a function of the spatial
coordinates within R. Immobile free charge embedded in the
dielectric is described by a volume charge density p, which is
a function of the spatial coordinates within R. It is
mathematically convenient to assume that both € and p are
well-behaved functions of the spatial coordinates within R.
Discontinuities in € and/or surface charges on the boundaries
of dielectric structures can be treated by taking limits.

The objective is to calculate the electrostatic force on any
selected conductor within R, which will be called the “selected
conductor”.

A2. Elementary Potentials

Let N be the number of conducting surfaces which, when
combined with reflective surfaces (if any), form a closed
boundary for R. The elementary potentials ¢o, ¢, ....0n are
defined for future use by

VoleVgl=—p inR (Ala)



(Alb)
(A2a)

# =0 onS, (i=1..,N)

VoleV41=0 inR(i=1,..,N)

¢ =lonS,, ¢,=00nS;if j=i
G, j=1..,N) (A2b)
with reflective boundary conditions tacitly assumed on the
reflective boundaries. The elementary potentials are not all
independent. The sum in i of ¢ for i=1,....N satisfies the
homogeneous equation (A2a), reflective boundary conditions

on the reflective boundaries, and equals 1 on all other
boundary sections. The solution to this boundary value

problem is 1, so
N
Z ¢, =1.
i=l

Equations to follow are conveniently written in terms of a
Ci; array defined by

(A3)

Coo=[ 68, oV d’x (Ada)
Coj==[# pd’x (j=l..N)  (A4b)

C,=[cV4V dx
G,j=1...N). (Adc)

Future steps will explicitly calculate the C’s, and the defining
equations are not necessarily the most convenient for this
purpose. Alternate expressions can be obtained via the
divergence theorem. For example, if we first use (Alb), then
the divergence theorem, and then (Ala), we obtain

0=, [z V4, ]odS =
[ Véyols V1 x+ [ 8, VoleVg,1d°x =
feT8oV8, a5~ [ 4 pd’s

so that

Coo= [ # pd’x. (A5a)

Similar steps give

Lis Vg, odS =
d#: £V gy10dS — {4, [ V4,]0dS =
[V8,006V41d°x+ [ 4, Vol V]d’x
~ [ V8y0le V1’5~ [ #, Vole Vg1 d'x =
- L¢, pd’x

where the unit normal vector in all surface integrals is outward
from the interior of R (into the conductors). Combining the
above result with (A4b) gives

Co, = Lje Vé,0dS (j=L...N).

Similar steps give

(ASb)

Cy=[,8V8;°d5=
L £Vg odS (i,j=1..,N). (A5c)
Jj

Note that the C’s are not all independent. For example, it is
obvious from the above equations that

Ci.j = Cj.i . (A6a)
Two more constraints are obtained by combining (A3) with
(A4b) and (A4c) to get
N
YCoy=-| pd’x (A6b)
j=1
N
>, =0 (i=1..,N).  (A6c)

j=l
The signs of some of the C’s can be predicted for the general
case. It is obvious from (A4c) that

C,20 (i=1,..,N). (A7a)

Also, note that ¢;=1 on S;, and ¢=0 on §; for j#i, so ¢i
decreases as the observation point moves to S;, ie., the
gradient of ¢; is directed away from S;. The unit normal vector
is directed into S;, so we conclude from (ASc) that

C,;<0 ifi#j (i.j=Ll..N).  (A7b)

A3. Expressions for Charge and Energy

Let each conductor S; be at a potential V; and carry a charge
Q.. Let ¢ be the potential produced by this arrangement, so ¢
satisfies

VoleV@g]l=—p inR
6=V, onS, (i=1..,N)
with reflective boundary conditions tacitly assumed on the
reflective boundaries. The motivation for defining the
elementary potentials is that ¢ can be expressed as

N
=9, + ZV, é;
im=]
which can be verified by using (A1) and (A2) to conclude that
the right side satisfies the same boundary value problem as the

left side.

The energy U stored in the electrostatic field is given by the
well-known equation

PR
U--Z—IR£V¢0V¢dx.

One motivation for defining the C’s is that after substituting
(A8) into the above equation and expanding the product of
sums, the resulting expression will contain terms appearing on
the right sides of (Ada) and (A4c), plus some additional terms
that can be shown to be zero from the divergence theorem.
Using (A4) to express the non-vanishing terms in terms of the

C's gives

(A8)

N
U=1c0,0+lZc,.,,v,.v,. (A9)
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The Q’s can also be expressed in terms of the C’s. We start

with Gauss’s law
Q = L.g ‘.7¢ °dS
j
and use (A8) to substitute for ¢, and then use (AS) to obtain

N
Q,=Cyp,+2.C.,V, (i=L..,N). (Al0)

Jj=l

A4. Electrostatic Force

Let X¢ refer to some fixed point on the selected conductor,
so that a change in Xc represents a translation of this
conductor. All other conductors and dielectric structures are
imagined to be held in fixed positions when the selected
conductor is translated. Arbitrarily small translations are
sufficient for the analysis to follow, so it is not necessary for
the physical system to make sense for all Xc (e.g., that places
the selected conductor inside of another conductor, or outside
of R). It is only necessary for the physical system to make
sense for Xc in some arbitrarily small neighborhood of the
actual location of the selected conductor. With the selected
conductor now imagined to be movable, the C’s become
functions of Xc. Instead of C;;, we now write Ci;(Xc)-
Similarly, instead of U, we now write U(Xc¢).

Suppose an external force is applied to the selected
conductor, and is adjusted so that it nearly balances the
electrostatic force, allowing the selected conductor to be
displaced with a negligible change in kinetic energy. If the
selected conductor is displaced, the external force does some
work, and there is also a change in the energy of the system.
With some qualifications (discussed below), this work equals
the change in energy. There is no change in kinetic energy, so
the work done by the external force equals the change in U,
implying that the external force is the gradient (in the Xc
coordinates) of U(X¢). The electrostatic force balances the
external force, so the electrostatic force F is the negative of
this gradient, i.e., ‘

F=-V.U(X.) (Al1)
where the subscript to the gradient operator refers to the Xc
coordinates.

Two qualifications are needed for (All) to be valid. An
early assumption leading to (A1) is that the work done by the
external force equals the change in energy of the system.
Therefore, one qualification is that there are no other agents
exchanging energy with the system. In particular, there can be
no voltage sources exchanging charge and energy with the
conductors while the selected conductor is displaced. If there
are any voltage sources forcing the conductors to be at the
potentials V,,...,Vy, these sources must be disconnected
during the time that the selected conductor is displaced.
Therefore, the Q’s, and not the V’s, are regarded as constants
when Xc is changed. This requires that the V's change as Xc
changes in order to satisfy (A10), i.e., the variations in the V's
are determined from

- N - —
Q,=Cp,(X)+D.C (X )V (Xe)
Jj=l
(i=1..,N). (Al2)

The second qualification is that there be no energy losses
(stored energy converted into heat) when the selected
conductor is displaced. There may be some free charge
imbedded in the dielectric in the immediate vicinity of the
selected conductor, but the conductor is not permitted to come
into direct contact with any free charge during the
displacement, because this charge would be irreversibly
absorbed by the conductor. We must therefore imagine a thin
layer of space which surrounds the selected conductor and is
devoid of free charge. The mathematical significance of this
statement is that sufficiently small changes in X¢ from the
actual conductor location do not change the right side of
(A6b). Therefore, the gradient of (A6b), evaluated at the
actual conductor location, is calculated by treating the right
side as a constant, and the result is

N —
Z D,; =0
i=l

where the D’s are defined by
D,;=V.C (X.) (allallowedi,j). (Al4)

(A13)

Subject to the qualifications (A12) and (A13), the force is
calculated from (A11). Substituting (A9) into (A11) and taking
the gradient gives

1= 1 & =
Do.o ""ZDi.jViVj

F=—
2 ijel
N N .
=SWID.CL VY| (AlS)
i=1 J=l
This equation is more convenient when written without
gradients of the V's. For this purpose, we take the gradient of
(Al12) to get

N N
>C,, V.V, =-Dy; - D,;V;. (i=1..N)
jsl Jj=1
Using this equation to substitute for the bracket in (A15) gives
QR Y = 1
=>'D,,V,V,+>.D,,V, -~ (A16)
237 per 2
It is possible to use constraints between the D’s to write
(A16) so that it contains fewer terms. One constraint is (A13).

Other constraints are obtained from (Al4) combined with
(A6a) and (A6c), which gives

Di-j = D/" (i, j = 1""1 N)

D,,.

—

(Al7a)

iﬁ,._ ;=0 (i=L.,N).  (Al7b)

=l
By using (A13) and (A17), it is possible to re-arrange (A16)
into



N-l

N -
F=-13YB,, -V,
2:!/-14»1

+ZDO‘(V -V,) ——Doo (Al8)

i=]
where Vy is an arbitrary potential. It may be convenient (but
not required) to let Vy be the potential of the selected

conductor.

AS. An Example

The example considered is the problem relevant to the main
text, shown in Figs.2 and 3. We will calculate the horizontal
force that a single cell shown in Fig.3 exerts on the ME.

A region having a closed boundary can be constructed
without including boundary surfaces at remote locations by
including some artificial reflective boundaries. The force that
will be calculated is the force for a hypothetical arrangement
having such reflective boundaries. In order for the force for
this hypothetical arrangement to approximate the force for the
actual arrangement, it is necessary that the two arrangements
have approximately the same electric field patterns. This
requires that the artificial reflective boundaries be
approximately tangent to the electric field lines in the actual
arrangement. The electric field pattern relevant for this
consideration is the one produced when the conductors are at
the same potentials that produce the force to be calculated.
The three upper electrodes will all be at different potentials,
so, neglecting fringing near the top of these electrodes, the
electric field near the top of and between the upper electrodes
is approximately horizontal, as suggested in Fig.3. We also
assume that the electric field, below and near the horizontal
center of the two outer upper electrodes, is approximately
vertical. We can therefore include artificial reflective
boundaries shown as the dashed lines in Fig.A2. This produces
a closed boundary, as required by the theory (the problem is
approximated as two-dimensional, so a closed curve in the
plane of the page qualifies as a closed boundary surface).

The upper fixed electrodes are S; and S, the ME is S3, and
the lower conductive plane is Sy. The dimensions he, hg, hy, Ay,
A, and A,; are defined in Fig.A2. A length L is the depth into
the page. The quantities A and A, are somewhat arbitrary (the
horizontal locations of the artificial vertical reflective

)
i W+ X —> g:E

dielectric hyg

(SR .

conducting plane S,

Fig.A2: Anificial reflective boundaries (dashed lines)
produce a closed boundary for a simplified approximation.
Geometric dimensions are also shown, except L which is
into the page.

boundaries are somewhat arbitrary), so it is fortunate that they
will not appear in the final equations.

We are required to calculate variations in several quantities
produced by variations in the ME location, so it is necessary to
introduce a variable coordinate describing the ME location.
Only one coordinate, describing the horizontal position, is
needed to calculate the horizontal force. It is convenient to let
Xc refer to the displacement from the center position. Let W
be the vertical air gap width on either side of the ME when the
ME is centered, so W and X¢ are as shown in Fig.A2. Note
that X is positive when the ME is displaced to the right in the
figure. Horizontal components of vectors will refer to this
direction, so the horizontal component of the gradient in (A14)
is 8/6Xc.

We start with the elementary potential ¢p. Boundary
conditions and a sketch of the electric field pattern produced
by this potential are shown in Fig.A3. The figure shows a
positive charge layer inside the dielectric, but the analysis
applies to an arbitrary one-dimensional charge versus depth
profile. The vertical air gap width is smaller than the widths of
the upper electrodes, so the electric field is approximately
uniform below the lower electrodes. Let y be the vertical
coordinate with y=0 at the lower electrode, so y=hr at the
bottom of the upper electrodes, where hr=hsth,. For y
between 0 and hr, (A1) reduces to

d| dg,

—e—=|=— O<y<

dy[s dy] p for O0<y<h
$ =0 aty=0andaty=h;

with solution

|: hT_(_l_)_ y:|¢o(y)_
y 1 | pr 1
[L 8(y')dy][v [J; ;(—y:‘dy
+|:J:h &(y') :I-[)I:L £(y'") ”}p()")d}"

which can be verified by verifying that it satisfies the boundary
value problem. Using the above equation, while noting that
g=g, and p=0 above the dielectric gives

] p(y)dy'

SZ SJ Sl
$o=0 $o=0 $o=0
é + o-‘ +' + + +‘ ' + + E
S I | PN 3 S 3

Ss $o=0

Fig.A3: Boundary conditions for ¢y, and a sketch of a few
field lines.
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where the dielectric charge per unit area, G, is defined by
ad _
o= [ pNdy  (A19)

and an effective dielectric constant, €., for a (possibly)
inhomogeneous dielectric is defined by

—’1—4—.: ——
Eg '[’Ma(y)dy

To shorten the notation, we define a weighted average or
effective height, heff for the dielectric charge distribution by

f" [L——dy]p(y)dy (A21)

If the dielectric is homogeneous and if the charge is confined
to a thin layer, hey is the height of this layer above the lower
electrode. Whether the dielectric is homogeneous or not, if the
charge is confined to a thin layer at the top of the dielectric,
heg=hg. Substituting (A21) into the equations for the derivative

of ¢ gives

h_ ¢
[8%:' =g-—=L2 &5 (A22a)
dy |, h, €4 +h; &

[Eif"_o] 2

dy h, &4 +h; &

Although not needed to calculate the force, the main text
has a need for ¢ evaluated at the top of the dielectric.
Evaluating the equation for ¢ at y=hg, while using (A19),
(A20), and (A21) to simplify the notation, gives

hh
@y(h)=—L"4 —0.  (A23)
h, &4 +h, &

The next step is to calculate the C’s and D’s having a zero
subscript. The C’s are only needed to calculate the D’s, so we
do not have to calculate Cgg, because Dy is already known. In
the dielectric where p may differ from zero, ¢o calculated
above does not depend on Xc. Therefore, Cop given by (ASa)
does not depend on Xc, so (A14) produces our first result,

which is
D,, =0. (A24)

To calculate Cy,..., Coy We note from (ASb) that these are
the electric field fluxes through each of the four electrodes.

(A20)

(A22b)

Although the electric field associated with ¢ was
approximated as uniform in the dielectric and horizontal air
gap, there is still fringing in the vertical air gaps, which bends
the field lines entering these gaps so that the field lines
terminate on electrodes. Electric field lines entering a vertical
gap and terminating on an electrode contribute to the flux
through that electrode. Note that the flux through the right side
of S, (Fig.A3) plus the flux through the left side of S; equals
the flux entering the air gap between S; and S;. The two
former fluxes are very nearly equal, so the flux through the
right side of S; is one-half the flux entering the vertical air gap.
The total flux through S, is the flux through a horizontal
planar section at the bottom of the upper electrodes and having
a width of A; plus one-half the air gap width. This gives

oz“L[Az+ —W+X, )}[ ¢°} (A25)

and using (A22b) gives
Cor = )

L[A2 Lwax )] hy &9 (A26 )
-— — ——————— a
2 “lh ey +h &

Similar considerations for S; give

Co,l =
1 hy &0

—L|A+-W-X_) |——— (A26D)

2 h@r Eqthy &

Tﬁe flux through S; is obviously given by
=—[A+A +A+ 2W][gid¢;£] (A26¢)
y=0

where the bracket on the right is given by (A22a). Because of
the constraint (A6b), we are not required to calculate Co3s,
although we can as a matter of curiosity. Caiculating Cy 3 using
the same methods used to calculate Co, and Co; verifies that
(AED) is satisfied. The D’s are calculated from

dc,,
Dij = v (A27)
+ ac
and using (A26) gives
1 Lhye0
oy ST (A28a)
2h e, +h g
1 Lhye0

70 (A28D
1 2h e, +hy s, (428)

D,, =0. (A28¢)

We next consider ¢4 because the analysis is very similar to
that for ¢o. Boundary conditions and a sketch of the electric
field pattern produced by this potential are shown in Fig.A4.
As with ¢, we neglect fringing below the upper electrodes, so
we calculate ¢, in this region from the one-dimensional
problem given by



>

%[5%]=0 for O<y<h;

g, =laty=0and ¢, =0at y=h;

with solution
-1

h
g =1~ fe 2o f 1, dy
8:] 80 6.(.y)
so that
5d¢4 - € €0

dy h e, +he,
for O<y<h;. (A29)

The calculations of Cy; (=Ci4) and Dy; (=Di4) are similar to
those for Cy; and Dy;. The results are

Coo =—L[A. +-;-(w—xc>]

E4 €o
h, €4 +h, &

c __L[Aﬁi(wu )}__g___
e 2 ¢ h, €4 +h; &
£ &
C,,=-L[A, +W]—L>—
M ? h, &4 +h; &
Le g
D, L I (A30a)
" 2 h,g4+h, 8
Le, ¢
D,, =_._1___'l__°_ (A30b)
' 2 h e, +h, &
D3.4 =0. (A3OC)

We next consider ¢;. Boundary conditions and a sketch of
the electric field pattern produced by this potential are shown
in Fig.AS. Note that C, 4 was already calculated, so we need ¢;
only to calculate C, ; and C, 3. The quantity C, 3 is determined
by the electric field lines connecting S; to S;. The dimension
h. in Fig.A2 is much larger than the air gap W, suggesting that
a no-fringing approximation for ¢, in the air gap may produce
an adequate estimate of C,;. Note that there is a distinction
between C;; and the C's previously calculated in terms of
required accuracy. To discuss this, we define some
terminology. The force on the ME produced by specified
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Fig.A4: Boundary conditions for ¢, and a sketch of a few
field lines.

electrode potentials but in the absence of a dielectric charge
will be called the nominal force. The change in the force on
the ME produced by adding a dielectric charge, while
maintaining the electrode potentials, will be called the excess
force. The electric field fringing in Fig.A3 (the connection of
field lines to the electrodes via field line bending in the
vertical air gaps) are needed to obtain an excess horizontal
force. Therefore, it is essential that calculations include field
lines entering the air gaps if we want to predict a nonzero
excess horizontal force. Similarly, it is essential that
calculations include field lines entering the air gap in Fig.A4 if
we want to predict the influence that S4 has on the nominal
horizontal force. In contrast, calculations need not include
fringing to predict a nominal horizontal force between S, and
S,, fringing is only needed to make the calculations accurate to
many digits. Assuming that our accuracy requirements will
tolerate a moderate fractional or percent error in the nominal
force (certainly true if our only interest is in the excess force),
a no-fringing approximation for ¢, is adequate for calculating
Cyzand Cy . The results are

C.,=0
C,,=- Lh, &, '
W-X.
Similar considerations for ¢, give
Lh
Cy3= _ b
W+X,
so the D’s are given by
D,,=0 (A31a)
D, =-——Chebo (A31b)
(W - Xc)
Lh
e o (A310)

D,,=———.
B weX,)?
Constraints were used to eliminate redundant D’s, that can be
calculated from others, from (A18). Taking Vi to be V3, the
only D’s appearing in (A18) are those calculated from (A24),
(A28), (A30), and (A31). Substituting for these D’s in (A18)
while using V,=V; gives

F = Fnam + FEXCZ.YJ (A32a)
where Foon is the nominal force given by
S; $, S
=0 $=0 =1

N

S¢ =0

Fig.AS: Boundary conditions for ¢,, and a sketch of a few
field lines.
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(A32b)
and Foy.q is the excess force given by

Lh,_, ¢
cxce.u_"'l z (A (Vl'-Vz)- (A32C)

"2 6, +h 5



